Vektorový integrální počet
$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\AND{\quad \and \quad}\xdef\set#1{\left\{ #1 \right\}}\xdef\brackets#1{\left( #1 \right)} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\boldsymbol{#1}} \xdef\mcal#1{\mathcal{#1}} \xdef\vv#1{\mathbf{#1}}\xdef\vvp#1{\pmb{#1}} \xdef\ve{\varepsilon} \xdef\l{\lambda} \xdef\th{\vartheta} \xdef\a{\alpha} \xdef\vf{\varphi} \xdef\Tagged#1{(\text{#1})} \xdef\tagged*#1{\text{#1}} \xdef\tagEqHere#1#2{\href{#2\#eq-#1}{(\text{#1})}} \xdef\tagDeHere#1#2{\href{#2\#de-#1}{\text{#1}}} \xdef\tagEq#1{\href{\#eq-#1}{(\text{#1})}} \xdef\tagDe#1{\href{\#de-#1}{\text{#1}}} \xdef\T#1{\htmlId{eq-#1}{#1}} \xdef\D#1{\htmlId{de-#1}{\vv{#1}}} \xdef\conv#1{\mathrm{conv}\, #1} \xdef\cone#1{\mathrm{cone}\, #1} \xdef\aff#1{\mathrm{aff}\, #1} \xdef\lin#1{\mathrm{Lin}\, #1} \xdef\span#1{\mathrm{span}\, #1} \xdef\O{\mathcal O} \xdef\ri#1{\mathrm{ri}\, #1} \xdef\rd#1{\mathrm{r}\partial\, #1} \xdef\interior#1{\mathrm{int}\, #1} \xdef\proj{\Pi} \xdef\epi#1{\mathrm{epi}\, #1} \xdef\grad#1{\mathrm{grad}\, #1} \xdef\gradT#1{\mathrm{grad}^T #1} \xdef\gradx#1{\mathrm{grad}_x #1} \xdef\hess#1{\nabla^2\, #1} \xdef\hessx#1{\nabla^2_x #1} \xdef\jacobx#1{D_x #1} \xdef\jacob#1{D #1} \xdef\subdif#1{\partial #1} \xdef\co#1{\mathrm{co}\, #1} \xdef\iter#1{^{[#1]}} \xdef\str{^*} \xdef\spv{\mcal V} \xdef\civ{\mcal U} \xdef\other#1{\hat{#1}} \xdef\xx{\vv x} \xdef\yy{\vv y} \xdef\partDiff#1{\frac{\partial}{\partial #1}} \xdef\partDeriv#1#2{\frac{\partial #1}{\partial #2}} \xdef\Div{\mathrm{div}\,} $$
Základní pojmy
Definice $\D{Z.1}$ (nabla operátor)
Hamiltonův nabla operátor definujeme v $\R^2$ jako $$ \nabla := \brackets{\partDiff x, \partDiff y}, $$ z čehož dostáváme, že funkci $f : \R^2 \to \R$ přiřazuje vektorové pole $$ \nabla f = \grad f = \brackets{ \partDeriv f x, \partDeriv f y}. $$ Obdobně bychom jej definovali pro $\R^n$.
Definice $\D{Z.2}$ (divergence)
Nechť máme vektorovou funkci $\vv F(x,y) = (P(x,y), Q(x,y))$, kde funkce $P,Q: \R^2 \to \R$ jsou spojitě diferencovatelné.
Tedy jsou spojité spolu se svými prvními parciálními derivacemi
Pak s použitím definice $\tagDe{Z.1}$ označíme divergenci vektorového pole jako funkci $\Div : \R^2 \to \R$ definovanou předpisem $$ \Div {\vv F} = \scal {\nabla} {\vv F} = \partDeriv P x + \partDeriv Q y = P_x + Q_y, \quad \Div {\vv F} \in [-1, 1]. $$ Obdobně bychom divergenci definovali pro vektorové pole v $\R^n$. Dále si uvědomme, že divergence uvádá "poměr" přítoku a odtoku vektorového pole v daném bodě. To jest, je-li $\Div {\vv F}(x,y) > 0$, pak v bodě $[x,y]$ více vektorové odtéká, než je do toho bodu přítok. Analogicky pro situaci $\Div {\vv F}(x,y) < 0$.
V analogii s kapalinami by to byl bod, ze kterého kapalina více odtéká, než do něj přitéka - tj. v tomto bodě vzniká kapalina.
Definice $\D{Z.3}$ (zřídlovost)
Vektorové pole $\vv F$ nazveme nezřídlové, pokud pro každý jeho bod $[x,y]$ platí $$ \Div {\vv F}(x,y) = \vv 0. $$ V opačném případě jej nazveme zřídlové.