Advanced Search
Search Results
42 total results found
5th Semester
Bachelor's Thesis
M5170 Matematické programování
M5120 Lineární statistické modely
M7190 Teorie her
Konvexní množiny
$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...
Playing around with parameters
Optimizer STLSQ "Sequentially thresholded least squares" They take the argument $\lambda$, which specifies a threshold "of sparsity". Should parameter $p_i$ be smaller than $\lambda$, it will be removed (and it's corresponding term) Meaning that the bigger the...
Data.csv Structure
File data.csv should follow structure, where each "run" is suffixed by __ and the index of the run. For example the columns could be time__1 x__1 y__1 time__2 x__2 y__2 whaz For simple singular trajectories, it remains to be done per BTHS-19 - Ex...
Other implementations
Here are some implementations in other languages (and hopefully guides to use them) matlab python
Explanation of L2 norm of an error
When solving for the sparsest possible set of DEs, it is likely our found model will not describe the data exactly - there will be an error Therefore we can measure the error and give the user it's $l^2$-norm The error is a vector of errors at each time-step ...
Various cutoffs
Should be Differential(t)(V) = p₁ + V*p₂ + W*p₄ + p₃*(V^3) Differential(t)(W) = p₅ + V*p₆ + W*p₇ Always the title is cutoff and optimization method Smooth Forward Df 2000 & STLSQ Model ##Basis#388 with 2 equations States : V W Parameters : 6 Independent varia...
Oddělování konvexních množin
$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...
Konvexní funkce
$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...
Subgradient a subdiferenciál a Fenchelova transformace
$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...
Numerické metody v R
$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...
Numerické metody v R^n
$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...
Nutné a postačující podmínky optimality
$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...
Duální úloha
$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...
Analýza citlivosti
$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...
2. cvičení
$$ \xdef\mcal#1{\mathcal{#1}} \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\N{\mathbb N} \xdef\R{\mathbb R} \xdef\Q{\mathbb{Q}} \xdef\Z{\mathbb{Z}} \xdef\D{\mathbb{D}} \xdef\bm#1{\boldsymbol{#1}} \xdef\vv#1{\mathbf{#1}} \xdef\vvp#1{\pmb{#1}} \xdef\floor#1{\lflo...
3. cvičení
$$ \xdef\mcal#1{\mathcal{#1}} \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\N{\mathbb N} \xdef\R{\mathbb R} \xdef\Q{\mathbb{Q}} \xdef\Z{\mathbb{Z}} \xdef\D{\mathbb{D}} \xdef\bm#1{\boldsymbol{#1}} \xdef\vv#1{\mathbf{#1}} \xdef\vvp#1{\pmb{#1}} \xdef\floor#1{\lflo...
4. cvičení
$$ \xdef\mcal#1{\mathcal{#1}} \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\N{\mathbb N} \xdef\R{\mathbb R} \xdef\Q{\mathbb{Q}} \xdef\Z{\mathbb{Z}} \xdef\D{\mathbb{D}} \xdef\bm#1{\boldsymbol{#1}} \xdef\vv#1{\mathbf{#1}} \xdef\vvp#1{\pmb{#1}} \xdef\floor#1{\lflo...
5. cvičení
$$ \xdef\mcal#1{\mathcal{#1}} \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\N{\mathbb N} \xdef\R{\mathbb R} \xdef\Q{\mathbb{Q}} \xdef\Z{\mathbb{Z}} \xdef\D{\mathbb{D}} \xdef\bm#1{\boldsymbol{#1}} \xdef\vv#1{\mathbf{#1}} \xdef\vvp#1{\pmb{#1}} \xdef\floor#1{\lflo...
7. cvičení
$$ \xdef\mcal#1{\mathcal{#1}} \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\N{\mathbb N} \xdef\R{\mathbb R} \xdef\Q{\mathbb{Q}} \xdef\Z{\mathbb{Z}} \xdef\D{\mathbb{D}} \xdef\bm#1{\boldsymbol{#1}} \xdef\vv#1{\mathbf{#1}} \xdef\vvp#1{\pmb{#1}} \xdef\floor#1{\lflo...
9. cvičení
a) IS pro $\beta_i$: $$ T_i = \frac {\hat{\beta_i}} {\sqrt{\hat{\sigma} (\pmb X^T \pmb X)^{-1}_{i,i}}} \sim t(n-p) $$ Pak $$ P\left(T_ i \in \left[t_{\frac \alpha 2}(n-p), t_{1 - \frac \alpha 2}(n-p)\right]\right) = 1 - \alpha $$ $$ t_{\frac \alpha 2}(n-p) \le...