Skip to main content
Advanced Search
Search Terms
Content Type

Exact Matches
Tag Searches
Date Options
Updated after
Updated before
Created after
Created before

Search Results

42 total results found

5th Semester

Bachelor's Thesis

M5170 Matematické programování

5th Semester

M5120 Lineární statistické modely

5th Semester

M7190 Teorie her

Konvexní množiny

5th Semester M5170 Matematické programování

$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...

Playing around with parameters

Bachelor's Thesis

Optimizer STLSQ "Sequentially thresholded least squares" They take the argument $\lambda$, which specifies a threshold "of sparsity". Should parameter $p_i$ be smaller than $\lambda$, it will be removed (and it's corresponding term) Meaning that the bigger the...

Data.csv Structure

Bachelor's Thesis

File data.csv should follow structure, where each "run" is suffixed by __ and the index of the run. For example the columns could be time__1 x__1 y__1 time__2 x__2 y__2 whaz For simple singular trajectories, it remains to be done per BTHS-19 - Ex...

Other implementations

Bachelor's Thesis

Here are some implementations in other languages (and hopefully guides to use them) matlab python

Explanation of L2 norm of an error

Bachelor's Thesis

When solving for the sparsest possible set of DEs, it is likely our found model will not describe the data exactly - there will be an error Therefore we can measure the error and give the user it's $l^2$-norm The error is a vector of errors at each time-step ...

Various cutoffs

Bachelor's Thesis

Should be Differential(t)(V) = p₁ + V*p₂ + W*p₄ + p₃*(V^3) Differential(t)(W) = p₅ + V*p₆ + W*p₇ Always the title is cutoff and optimization method Smooth Forward Df 2000 & STLSQ Model ##Basis#388 with 2 equations States : V W Parameters : 6 Independent varia...

Oddělování konvexních množin

5th Semester M5170 Matematické programování

$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...

Konvexní funkce

5th Semester M5170 Matematické programování

$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...

Subgradient a subdiferenciál a Fenchelova transformace

5th Semester M5170 Matematické programování

$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...

Numerické metody v R

5th Semester M5170 Matematické programování

$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...

Numerické metody v R^n

5th Semester M5170 Matematické programování

$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...

Nutné a postačující podmínky optimality

5th Semester M5170 Matematické programování

$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...

Duální úloha

5th Semester M5170 Matematické programování

$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...

Analýza citlivosti

5th Semester M5170 Matematické programování

$$ \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\norm#1{\left\lVert #1 \right\rVert} \xdef\dist{\rho} \xdef\and{\&}\xdef\brackets#1{\left\{ #1 \right\}} \xdef\parc#1#2{\frac {\partial #1}{\partial #2}} \xdef\mtr#1{\begin{pmatrix}#1\end{pmatrix}} \xdef\bm#1{\bol...

2. cvičení

5th Semester M5120 Lineární statistické modely

$$ \xdef\mcal#1{\mathcal{#1}} \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\N{\mathbb N} \xdef\R{\mathbb R} \xdef\Q{\mathbb{Q}} \xdef\Z{\mathbb{Z}} \xdef\D{\mathbb{D}} \xdef\bm#1{\boldsymbol{#1}} \xdef\vv#1{\mathbf{#1}} \xdef\vvp#1{\pmb{#1}} \xdef\floor#1{\lflo...

3. cvičení

5th Semester M5120 Lineární statistické modely

$$ \xdef\mcal#1{\mathcal{#1}} \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\N{\mathbb N} \xdef\R{\mathbb R} \xdef\Q{\mathbb{Q}} \xdef\Z{\mathbb{Z}} \xdef\D{\mathbb{D}} \xdef\bm#1{\boldsymbol{#1}} \xdef\vv#1{\mathbf{#1}} \xdef\vvp#1{\pmb{#1}} \xdef\floor#1{\lflo...

4. cvičení

5th Semester M5120 Lineární statistické modely

$$ \xdef\mcal#1{\mathcal{#1}} \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\N{\mathbb N} \xdef\R{\mathbb R} \xdef\Q{\mathbb{Q}} \xdef\Z{\mathbb{Z}} \xdef\D{\mathbb{D}} \xdef\bm#1{\boldsymbol{#1}} \xdef\vv#1{\mathbf{#1}} \xdef\vvp#1{\pmb{#1}} \xdef\floor#1{\lflo...

5. cvičení

5th Semester M5120 Lineární statistické modely

$$ \xdef\mcal#1{\mathcal{#1}} \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\N{\mathbb N} \xdef\R{\mathbb R} \xdef\Q{\mathbb{Q}} \xdef\Z{\mathbb{Z}} \xdef\D{\mathbb{D}} \xdef\bm#1{\boldsymbol{#1}} \xdef\vv#1{\mathbf{#1}} \xdef\vvp#1{\pmb{#1}} \xdef\floor#1{\lflo...

7. cvičení

5th Semester M5120 Lineární statistické modely

$$ \xdef\mcal#1{\mathcal{#1}} \xdef\scal#1#2{\langle #1, #2 \rangle} \xdef\N{\mathbb N} \xdef\R{\mathbb R} \xdef\Q{\mathbb{Q}} \xdef\Z{\mathbb{Z}} \xdef\D{\mathbb{D}} \xdef\bm#1{\boldsymbol{#1}} \xdef\vv#1{\mathbf{#1}} \xdef\vvp#1{\pmb{#1}} \xdef\floor#1{\lflo...

9. cvičení

5th Semester M5120 Lineární statistické modely

a) IS pro $\beta_i$: $$ T_i = \frac {\hat{\beta_i}} {\sqrt{\hat{\sigma} (\pmb X^T \pmb X)^{-1}_{i,i}}} \sim t(n-p) $$ Pak $$ P\left(T_ i \in \left[t_{\frac \alpha 2}(n-p), t_{1 - \frac \alpha 2}(n-p)\right]\right) = 1 - \alpha $$ $$ t_{\frac \alpha 2}(n-p) \le...